Jennifer Chue
08/26/2025, 7:37 AMIsmail Karafakioglu
08/26/2025, 8:55 AMJennifer Chue
08/26/2025, 9:21 AM749ffd368887154f25fa81338035b555
.Ismail Karafakioglu
08/26/2025, 10:05 AMDaniela Salmeron
08/26/2025, 12:45 PMJennifer Chue
08/27/2025, 8:26 AMDaniela Salmeron
08/27/2025, 8:30 AMDaniela Salmeron
08/28/2025, 12:11 PMJennifer Chue
08/29/2025, 9:29 AMDaniela Salmeron
08/29/2025, 11:28 AMLoading data for table 'OrgStructure' timed out.
Which should have been reflected on your side with the error message, sorry about that, we’ll fix this by next week.
Regardless, with this error message I can confirm that the root cause is indeed that your FlexConnect is too slow and best would be to optimize the query.
We are also planning a second fix for the end of next week, to be able to give more time to the query, so it could avoid the time out.Jennifer Chue
09/01/2025, 5:45 AMDaniela Salmeron
09/01/2025, 9:00 AMDaniela Salmeron
09/01/2025, 11:20 AMDaniela Salmeron
09/03/2025, 1:34 PMJennifer Chue
09/04/2025, 1:38 AMDaniela Salmeron
09/04/2025, 10:36 AMJennifer Chue
09/05/2025, 2:07 AMDaniela Salmeron
09/05/2025, 1:15 PMDaniela Salmeron
09/05/2025, 1:16 PM<http://_LOGGER.info|_LOGGER.info>(
"report_execution",
report_execution_context=execution_context.report_execution_request,
)
It will return something like this following example:
2025-08-29T13:11:00.492255Z [info ] execution_context [sample_flexconnect_function] execution_context=ExecutionContext(execution_type=<ExecutionType.REPORT: 'REPORT'>, organization_id='default', workspace_id='8c269ce1792242ebb795d9b2c0f49ac4', user_id='demo', timestamp='2025-08-29T13:11:00+00:00', timezone='Etc/UTC', week_start='SUNDAY', attributes=[ExecutionContextAttribute(attribute_identifier='SampleFlexConnectFunction.attribute1', attribute_title='Attribute1', label_identifier='SampleFlexConnectFunction.attribute1', label_title='Attribute1', date_granularity=None, sorting=None)], filters=[], report_execution_request=ReportExecutionRequest(attributes=[compute_model.Attribute(local_id='a_SampleFlexConnectFunction.attribute1', label='label/SampleFlexConnectFunction.attribute1', show_all_values='False')], metrics=[compute_model.SimpleMetric(item='fact/SampleFlexConnectFunction.fact1', aggregation='MEDIAN', compute_ratio='False', filters='[]')], filters=[]), label_elements_execution_request=None) fun=SampleFlexConnectFunction peer=ipv4:127.0.0.1:64005 task_id=105c7ac75e09433899a7ba273e5aa946
Which shows the attributes and metrics, etc.
You can then use the task_id
to correlate the inputs with the errors.